Effect of disorder strength on optimal paths in complex networks.
نویسندگان
چکیده
We study the transition between the strong and weak disorder regimes in the scaling properties of the average optimal path l(opt) in a disordered Erdos-Rényi (ER) random network and scale-free (SF) network. Each link i is associated with a weight tau(i) identical withexp (a r(i) ) , where r(i) is a random number taken from a uniform distribution between 0 and 1 and the parameter a controls the strength of the disorder. We find that for any finite a , there is a crossover network size N* (a) at which the transition occurs. For NN* (a) the scaling behavior is in the weak disorder regime, with l(opt) approximately ln N for ER networks and SF networks with lambda>3 . In order to study the transition we propose a measure which indicates how close or far the disordered network is from the limit of strong disorder. We propose a scaling ansatz for this measure and demonstrate its validity. We proceed to derive the scaling relation between N* (a) and a . We find that N* (a) approximately a(3) for ER networks and for SF networks with lambda>/=4 , and N* (a) approximately a (lambda-1) (/ (lambda-3) ) for SF networks with 3<lambda<4 .
منابع مشابه
Statistical Properties of Optimal Paths
We study the statistical properties of optimal paths in weighted complex networks with general distribution of weights. We find a general criterion for the strength of disorder and show the relation of optimal paths properties to percolation, in both strong and weak disorder limits. Transport in weighted networks is dominated by the minimum spanning tree (MST), the tree connecting all nodes wit...
متن کاملIntrusion Detection in Wireless Sensor Networks using Genetic Algorithm
Wireless sensor networks, due to the characteristics of sensors such as wireless communication channels, the lack of infrastructure and targeted threats, are very vulnerable to the various attacks. Routing attacks on the networks, where a malicious node from sending data to the base station is perceived. In this article, a method that can be used to transfer the data securely to prevent attacks...
متن کاملAn Algorithm to Obtain Possibly Critical Paths in Imprecise Project Networks
We consider criticality in project networks having imprecise activity duration times. It is well known that finding all possibly critical paths of an imprecise project network is an NP-hard problem. Here, based on a method for finding critical paths of crisp networks by using only the forward recursion of critical path method, for the first time an algorithm is proposed which can find all pos...
متن کاملOPTIMALIZATION PHASE USING GRAPH MODELLING FOR RELIABLE BUILDING COMPLEXES
During the planning phase of modern, complex, block-structured, large-area located, but still landscape-harmonized health-care buildings, the key is the optimal positioning of the blocks and functions, simultaneously ensuring the most-effective backup-paths for any transportation route failure in the buildings in order to speed up system operation, reduce maintenance costs and especially to imp...
متن کاملOptimal Placement and Sizing of DGs and Shunt Capacitor Banks Simultaneously in Distribution Networks using Particle Swarm Optimization Algorithm Based on Adaptive Learning Strategy
Abstract: Optimization of DG and capacitors is a nonlinear objective optimization problem with equal and unequal constraints, and the efficiency of meta-heuristic methods for solving optimization problems has been proven to any degree of complex it. As the population grows and then electricity consumption increases, the need for generation increases, which further reduces voltage, increases los...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 70 4 Pt 2 شماره
صفحات -
تاریخ انتشار 2004